
REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS

SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

Abstract. Contrary to conventional cryptographic wisdom, the NIST SP 800-56A standard ex-
plicitly allows the use of a static key pair in more than one of the key establishment protocols
described in the standard. In this paper, we give examples of key establishment protocols that are
individually secure, but which are insecure when static key pairs are reused in two of the protocols.
We also propose an enhancement of the extended Canetti-Krawczyk security model and definition
for the situation where static public keys are reused in two or more key agreement protocols.

1. Introduction

Conventional cryptographic practice dictates that keying material should never be used in more
than one protocol. For example, Principle 2 of Anderson and Needham’s robustness principles for
public key protocols [3] advises:

If possible avoid using the same key for two different purposes (such as signing and
decryption)...

Section 13.5.1 of the Handbook of Applied Cryptography [17] states:

The principle of key separation is that keys for different purposes should be crypto-
graphically separated.

Several examples of the pitfalls of reusing keying material can be found in [3] and [17]. Kelsey,
Schneier and Wagner [12] introduced the notion of a ‘chosen-protocol attack’ whereby an attacker
designs a new protocol based on an existing protocol in such a way that sharing of keying material
between the two protocols renders the existing protocol insecure. More recently, Gligoroski, Andova
and Knapskog [10] showed that using a secret key in more than one mode of operation of a block
cipher can have an adverse effect on security.

Despite the potential security vulnerabilities, many systems today reuse keying material for dif-
ferent protocols and applications. As mentioned in [12], one of the reasons behind this phenomenon
is that certification and maintenance of public keys can be a costly process, and therefore it is cost-
effective to use the same public key for multiple protocols. Of course, reuse of keying material does
not necessarily result in a loss of security. For example, Coron et al. [8] proved that there is no
security loss if RSA key pairs are reused in the PSS versions of the RSA signature and encryption
schemes. Two examples were provided by Vasco, Hess and Steinwandt [23], who proved that the
Pointcheval-Stern [21] and Fujisaki-Okamoto [9] variants of the ElGamal signature and encryp-
tion schemes remain secure when key pairs are reused, as do the Boneh-Franklin identity-based
encryption scheme [5] and Hess’s identity-based signature scheme [11].

The objective of this paper is to investigate the security issues that can arise when static (long-
term) asymmetric key pairs are reused in more than one key agreement protocol. Our work is
motivated by the NIST SP 800-56A standard for key establishment [22]. This standard specifies
several variants of the Diffie-Hellman protocol, including one-pass, two-pass and three-pass versions

Date: September 29, 2009. Full version of a paper to appear in the proceedings of Indocrypt 2009.

1

2 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

of the Unified Model (UM) (see [4] and [18]) and MQV [15] key agreement protocols. Section 5.6.4.2
of [22] explicitly allows the reuse of static key pairs:

A static key pair may be used in more than one key establishment scheme. How-
ever, one static public/private key pair shall not be used for different purposes
(for example, a digital signature key pair is not to be used for key establishment
or vice versa) with the following possible exception: when requesting the (initial)
certificate for a public static key establishment key, the key establishment private
key associated with the public key may be used to sign the certificate request.

The allowance of the reuse of static public keys is somewhat surprising since the UM and MQV
protocols are quite different, and also because the protocols have different security attributes. For
example, the MQV protocols appear to be resistant to key-compromise impersonation attacks,
while the UM protocols are not. Also, the three-pass protocols achieve (full) forward secrecy, the
two-pass protocols achieve weak forward secrecy, while the one-pass protocols have neither full nor
weak forward secrecy. Thus it is conceivable that reusing static public keys results in a situation
where a stronger protocol may inherit the weaknesses of a protocol that was not intended to provide
certain security attributes.

The remainder of this paper is organized as follows. In §2 we give three examples of pairs
of key agreement protocols where the protocols in each pair are individually secure, but where
one protocol in each pair becomes insecure when static public keys are reused for both protocols
in that pair. The first example shows that the three-pass UM protocol as described in SP 800-
56A [22] can be successfully attacked if parties reuse their static key pairs with the one-pass UM
protocol described in [22]. Similarly, the three pass MQV protocol as described in [22] can be
successfully attacked if parties reuse their static key pairs with the one-pass MQV protocol. In §3
we describe a ‘shared’ model — an enhancement of the extended Canetti-Krawczyk security model
and associated definition [7, 13] that aims to capture the assurances guaranteed by multiple key
agreement protocols when each party uses the same static key pair in all the protocols. Appendix B
presents two protocols, which are then proven secure in our shared model in Appendix C.

Notation and terminology. Let G = 〈g〉 denote a multiplicatively-written cyclic group of prime
order q, and let G∗ = G \ {1}. The Computational Diffie-Hellman (CDH) assumption in G is that
computing CDH(U, V) = guv is infeasible given U = gu and V = gv where u, v ∈R [1, q − 1]. The
Decisional Diffie-Hellman (DDH) assumption in G is that distinguishing DH triples (ga, gb, gab)
from random triples (ga, gb, gc) is infeasible. The Gap Diffie-Hellman (GDH) assumption in G is
that the CDH assumption holds even when a CDH solver is given a DDH oracle that distinguishes
DH triples from random triples.

With the exception of Protocols 1 and 2 in §2.3, all key agreement protocols in this paper are of
the Diffie-Hellman variety where the two communicating parties Â and B̂ exchange static public
keys. Party Â’s static private key is an integer a ∈R [1, q − 1], and her corresponding static public
key is A = ga. Similarly, party B̂ has a static key pair (b,B), and so on. A certifying authority (CA)
issues certificates that binds a party’s identifier to its static public key. We do not assume that the
CA requires parties to prove possession of their static private keys, but we do insist that the CA
verifies that static public keys belong to G∗. See §2.1 for a discussion on the format of certificates in
the context of static key reuse. A party Â called the initiator commences the protocol by selecting
an ephemeral (one-time) key pair and then sends the ephemeral public key (and possibly other
data) to the second party. In our protocols, the ephemeral private key is either a randomly selected
integer x ∈ [1, q − 1] or a randomly selected binary string x̃ which is used together with the static
private key to derive an integer x ∈ [1, q−1], and the corresponding ephemeral public key is X = gx.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 3

Upon receipt of X, the responder B̂ selects an ephemeral private key y or ỹ and sends Y = gy (and
possibly other data) to Â; this step is omitted in the one-pass UM protocol of §2.2.1. The parties
may exchange some additional messages, after which they accept a session key. We use I and R
to denote the constant strings “initiator” and “responder”. (The NIST SP 800-56A standard uses
the strings “KC 1 U” and “KC 1 V”.)

2. Examples

We provide three examples of interference between a pair of key agreement protocols in the
situation where parties are allowed to reuse their static keys. Since static keys are assumed to be
certified, such reuse needs to take into account certificate format; this issue is discussed in §2.1.

The pair of protocols considered in the first two examples in §2.2 and §2.3 belong to the same
family — Unified Model for the former and the so-called Generic 2-pass KEM for the latter. In
each case we exploit — albeit in a different manner — their structural similarity together with the
fact that the same static key is reused to mount an attack on one protocol based on our knowledge
of a session key in the other. Our third example in §2.4, in contrast, does not involve protocols
of the same family. They are derived from two existing provably secure protocols to emphasize
the danger of static key reuse. The session keys in these two protocols are computed in different
fashions and the attack, though active, does not involve any SessionKeyReveal query like the other
two examples.

2.1. Certificate format. As already mentioned, a certifying authority (CA) issues certificates
binding a user’s identifier to its static public key. We consider a scenario where parties are permitted
to reuse their static public keys in two key agreement protocols, Π1 and Π2. There are essentially
two cases depending upon whether the certificate also binds the protocol(s) for which that public
key will be used. We emphasize that our attacks are equally valid in both cases. However, a
certificate formatted according to Case 2 gives the adversary additional power, namely the ability
to replay the certificate, which is not possible in Case 1.

Case 1. The certificate specifies the protocol(s) for which the public key will be used. This can be
further sub-divided into two cases as follows.

(a) Parties obtain a single certificate for each static public key. For example, if Â wishes to
reuse her static public key A in both Π1 and Π2 then this information should be included
in Â’s certificate for A. When another party B̂ wishes to establish a session key with Â
using Π1, then he will learn from Â’s certificate that Â reuses the public key A in Π2.

(b) Parties obtain separate certificates for each protocol pertaining to the same static public key.

If Â wishes to reuse her static public key A in both Π1 and Π2 then she obtains two different
certificates, where each certificate specifies for which particular protocol A will be used. In
this case, when B̂ wishes to establish a session key with Â using Π1 then he retrieves Â’s
certificate for Π1 and may not be aware that A is being reused in Π2.

All three examples of protocol interference mentioned in this section work in either of these
subcases. In the first two examples both parties have to reuse their static keys in the two protocols.
An interesting feature of the third example, which distinguishes it from the other two examples, is
that even if only one of the parties reuses its static key amongst the two protocols then that will
lead to the compromise of the session key at another party in one of the protocols even though that
party does not reuse its static key.

4 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

Case 2. The certificate does not specify for which protocol(s) the public key will be used. When Â
obtains a certificate for her public key A then the certificate itself does not contain any information
about the protocol(s) for which A will be used. For example, Â can reuse the public key in both

Π1 and Π2 or use it only in one protocol. Suppose, Â reserves the public key A for use in Π1 only.
Since the certificate on A does not bind it to Π1, an adversary can easily pass it as the public key
of Â in Π2. In this scenario, the attacks described here work even if none of the parties reuse their
public key in more than one protocol.

2.2. The one-pass and three-pass Unified Model protocols. The ‘unified model’ is a family
of two-party Diffie-Hellman key agreement protocols that has been standardized in ANSI X9.42
[1], ANSI X9.63 [2], and NIST SP 800-56A [22]. In [22], the one-pass protocol is called ‘dhHy-
bridOneFlow’ when the underlying group G is a DSA-type group, and ‘One-Pass Unified Model’
when G is an elliptic curve group. One-pass UM is suitable for applications such as email, where
the intended receiver is not online and therefore unable to contribute an ephemeral key. In [22],
the three-pass protocol, which consists of the two-pass protocol combined with bilateral key con-
firmation, is called ‘dhHybrid1’ when G is a DSA-type group, and ‘Full Unified Model’ when G is
an elliptic curve group.

2.2.1. One-pass UM. The protocol is depicted in Figure 1. Here, keydatalen is an integer that
indicates the bitlength of the secret keying material to be generated, AlgorithmID is a bit string
that indicates how the deriving keying material will be parsed and for which algorithm(s) the
derived secret keying material will be used, and Λ denotes optional public information that can be
included in the key derivation function H. The session key is κ1.

x, X

B̂, b, BÂ, a, A

κ1 = H(gxb, gab, keydatalen, AlgorithmID, Â, B̂, Λ)

Â, X

Figure 1. The one-pass UM protocol.

2.2.2. Three-pass UM. The protocol is depicted in Figure 2. Here, MAC is a message authentication
code scheme such as HMAC, and Λ1 and Λ2 are optional strings. The session key is κ2, whereas
κ′ is an ephemeral secret key used to authenticate the exchanged ephemeral public keys and the
identifiers.

Â, X

y, Y

B̂, b, BÂ, a, A

x, X

(κ′, κ2) = H(gxy, gab, keydatalen, AlgorithmID, Â, B̂, Λ)

TA=MACκ′ (I, Â, B̂, X, Y, Λ2)

B̂, Y , TB=MACκ′ (R, B̂, Â, Y, X, Λ1)

Figure 2. The three-pass UM protocol.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 5

2.2.3. The attack. We describe an attack against the three-pass UM protocol in the situation where
parties reuse their static keys in the one-pass UM protocol. The attack makes the following plausible
assumptions. First, the one-pass protocol is used to derive 256 bits of keying material κ1, which is
then divided into a 128-bit HMAC key κm and a 128-bit AES key κe; these keys are subsequently
used in an application to encrypt and authenticate data. Second, the three-pass protocol uses
HMAC with a 128-bit key κ′ for key confirmation, and produces a 128-bit AES session key κ2.
Third, both protocols use the same AlgorithmID — this is consistent with the description of the
AlgorithmID field in [22, Section 5.8.1] where it is stated:

For example, AlgorithmID might indicate that bits 1-80 are to be used as an 80-bit
HMAC key and that bits 81-208 are to be used as a 128-bit AES key.

Finally, it is assumed that the attacker is able to use a SessionKeyReveal query to obtain session
keys produced by the one-pass protocol, but is unable to obtain session keys generated by the
three-pass protocol; this assumption is reasonable if the one-pass protocol is used in relatively low
security applications, whereas the three-pass protocol is reserved for high security applications.1

The attack proceeds as follows:

(1) The adversary M initiates a session sid1 of the three-pass UM protocol at Â and receives
(Â,X).

(2) M forwards (Â,X) to B̂ in a session sid2 of the one-pass UM protocol.
(3) B̂ computes a session key κ1 following the one-pass UM protocol.
(4) M issues a SessionKeyReveal query to session sid2 at B̂ to obtain κ1 = (κm, κe).
(5) M sets Y = B; note that κ1 = (κ′, κ2) under our assumptions. M then computes TB using

κ′ and sends (B̂, Y, TB) to session sid1 at Â.
(6) Â computes a session key κ2 following the three-pass UM protocol. Note that M knows

this session key.

We note that such an attack can also be launched on the three-pass MQV protocol as specified
in [22] if parties reuse their static keys with the one-pass MQV protocol. Such protocol interference
attacks can be prevented by following the general advice given in [12] – each protocol should have its
own unique identifier that is included in the cryptographic operations. In the case of the one-pass
and three-pass UM protocols, the attack we described can be thwarted by including the protocol
identifiers in the optional input Λ to the key derivation function. As a further safeguard against
potential interference attacks with other protocols, the protocol identifier can be included in the
optional inputs Λ1 and Λ2 to the MAC algorithm.

2.3. Generic 2-pass KEM protocols. Boyd et al. [6] proposed two generic key agreement pro-
tocols based on a pseudorandom function family and an arbitrary identity-based key encapsulation
mechanism (IB-KEM) that is secure against chosen-ciphertext attack. Both protocols are proven
secure in the Canetti-Krawczyk security model [7], which the authors extend to the identity-based
setting. The second protocol provides a stronger security guarantee, namely weak forward secrecy
under the DDH assumption. The authors also mention that their protocols can be easily adapted
to the PKI setting where the IB-KEM is replaced by a CCA-secure KEM. We show that a modified
version of the second protocol can be easily broken if the same static key is reused by the parties
amongst the protocols. We emphasize that our attack does not illustrate any weakness in the Boyd
et al. protocols which were designed and analyzed for the stand-alone setting.

1A well-designed key agreement protocol should achieve its security goals even if an attacker is able to learn some
session keys. This is because a key agreement protocol cannot guarantee that session keys won’t be improperly used
in an application (e.g., to encrypt messages with a weak symmetric-key encryption scheme, or in applications where
expired session keys may not be securely destroyed).

6 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

In the following description Enc() (resp. Dec()) is the encapsulation (resp. decapsulation) al-
gorithm of the underlying IB-KEM. The function Exctκ(·) is chosen uniformly at random from a
strong (m, ǫ)-strong randomness extractor, while ExpdK(·) is a pseudorandom function family. See
Definitions 2, 3 and 4 in [6] for their exact descriptions. In the protocol descriptions, dA and dB

denote the private keys of Â and B̂, while pk is the master public key of the Key Generation Center
(KGC) of the underlying IB-KEM.

2.3.1. Protocol 1. In Figure 3, the actual order in which the parties Â, B̂ exchange their messages
is irrelevant. If Â < B̂ under some predetermined lexicographic ordering, then the session identifier
is defined as s = Â||CA||B̂||CB . We note in passing that this definition of session identifier deviates
from that in the original CK model [7]. In particular, the session initiator cannot know in advance
the complete session identifier.

Â, dA

(CA, KA) ∈R Enc(pk, B̂)
B̂, CB

Â, CA B̂, dB

(CB , KB) ∈R Enc(pk, Â)

Â computes the session key κ1 as follows: B̂ computes the session key κ1 as follows:
1. KB = Dec(pk, dA, CB)
2. K ′

A = Exctκ(KA)
3. K ′

B = Exctκ(KB)
4. s = Â||CA||B̂||CB

5. κ1 = ExpdK ′

A
(s) ⊕ ExpdK ′

B
(s)

1. KA = Dec(pk, dB , CA)
2. K ′

B = Exctκ(KB)
3. K ′

A = Exctκ(KA)
4. s = Â||CA||B̂||CB

5. κ1 = ExpdK ′

B
(s) ⊕ ExpdK ′

A
(s)

Figure 3. Protocol 1 from [6].

2.3.2. Protocol 2. The description of Protocol 2 in Figure 4 differs slightly from the description in
[6] in that session identifiers are defined in a manner analogous to that of Protocol 1. Incidentally,
this modified version is identical to an earlier version of Protocol 2 (see the March 1, 2008 version
of [6] in the IACR ePrint Archive).

y, Yx, X

(CB , KB) ∈R Enc(pk, Â)(CA, KA) ∈R Enc(pk, B̂)

Â, dA B̂, dBÂ, CA, X

B̂, CB , Y

Â computes the session key κ2 as follows: B̂ computes the session key κ2 as follows:
1. KB = Dec(pk, dA, CB)
2. K ′

A = Exctκ(KA)
3. K ′

B = Exctκ(KB)
4. K ′

AB = Exctκ(Y x)
5. s = Â||CA||B̂||CB

6. κ2 = ExpdK ′

A
(s) ⊕ ExpdK ′

B
(s) ⊕ ExpdK ′

AB
(s)

1. KA = Dec(pk, dB , CA)
2. K ′

B = Exctκ(KB)
3. K ′

A = Exctκ(KA)
4. K ′

BA = Exctκ(Xy)
5. s = Â||CA||B̂||CB

6. κ2 = ExpdK ′

B
(s) ⊕ ExpdK ′

A
(s) ⊕ ExpdK ′

BA
(s)

Figure 4. Protocol 2 from [6].

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 7

2.3.3. The attack. The following attack can be mounted against Protocol 2 when static keys are
reused in both the protocols.

(1) The adversary M initiates a session of Protocol 1 at Â and receives (Â, CA).
(2) M chooses (x,X) and sends (Â, CA,X) to B̂ in a session of Protocol 2.
(3) B̂ responds with (B̂, CB , Y) and accepts a session key κ2 following Protocol 2.
(4) M forwards (B̂, CB) to Â in Protocol 1.
(5) Â computes a session key κ1 following Protocol 1.
(6) M issues a SessionKeyReveal query to Â to obtain κ1.
(7) M computes κ2 given κ1 and x.

Remark 1. For the above attack to be successful, it is necessary that both parties reuse their static
keys (and the same IB-KEM, Exctκ(·), and ExpdK(·)). In the identity-based setting, the unique
identity of a user is treated as her public key and the corresponding private key is derived from
this identity string by the KGC. It is natural in such a setting to use the same identity-private key
pair for two different key agreement protocols.

Remark 2. The above attack per-se does not work against Protocol 2 as it is described in [6].
However, we would like to note that the (informal) protocol description in [6] is not exactly suitable
for analysis in the Canetti-Krawczyk model. If instead we define the session identifier s according
to the original Canetti-Krawczyk model, then the security argument remains unaffected in the
stand-alone setting and the attack goes through if the static key is reused.

2.4. KEA+h and τ . We provide another example of a pair of protocols where reuse of the static
key pair by one of the communicating parties leads to the compromise of a session key of the other
communicating party in one of the protocols.

2.4.1. KEA+h. Lauter and Mityagin introduced the authenticated key exchange (AKE) protocol
KEA+ in [14] — this is a modification of the KEA protocol introduced earlier by the National
Security Agency [20]. They showed that KEA+ achieves, under the GDH and random oracle as-
sumptions, what they call AKE security against a strong adversary along with a form of weak
forward secrecy and resistance to key compromise impersonation. Figure 5 depicts a slight modifi-
cation of the KEA+ protocol, which we call the KEA+h protocol, where the key derivation function
is modified by introducing a new hash function H1. Interested readers are referred to [14] for a

x, X

Â, X B̂, b, B

y, Y

Â, a, A

B̂, Y

κ = H(H1(g
ay), H1(g

bx), Â, B̂)

Figure 5. Protocol KEA+h.

description of the original KEA+ and its security argument. We note that it is easy to verify that
KEA+h achieves all the security attributes of KEA+.

2.4.2. τ -Protocol. The τ -protocol is a new protocol derived from the µ-protocol (see [19, §3.1])
augmented with key confirmation. It was designed to highlight the problems that can arise from
reusing the same static key among different protocols. The τ -protocol is informally presented in
Figure 6, and formally given in Appendix A. It uses an MTI/C0-like exchange of messages [16]

8 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

to confirm the receipt of ephemeral public keys. It can be proven secure in the Canetti-Krawczyk
model [7] under the GDH and random oracle assumptions — the proof is straightforward but
tedious, and so it is omitted.

y, Y

B̂, b, BÂ, a, A

x, X

κ=H(gxy, X, Y)

Y = H1(Y a)

B̂, Y , TB=H2(gab, Y, B̂, Â,R), X=H1(Xb)

Â, X, TA=H2(gab, X, Â, B̂,I)

Figure 6. Protocol τ .

2.4.3. The attack. We can mount the following attack against KEA+h when one of the communi-
cating parties (namely B̂) shares the same static key with the τ protocol.

(1) The adversary M initiates a KEA+h session at Â with B̂ as the peer and obtains the
outgoing ephemeral public key X.

(2) M controls a party Ê with static key pair (e,E = ge) and initiates a τ -session with B̂ by
sending the message X, TE = H2(B

e,X, Ê, B̂,I).
(3) B̂ responds with (Y, TB ,H1(X

b)) from which M obtains H1(X
b).

(4) M selects an ephemeral key pair (z, Z = gz) and sends (B̂, Z) to Â in KEA+h.
(5) Â computes the KEA+h session key as κ = H(H1(Z

a),H1(B
x), Â, B̂).

(6) M computes the same session key as κ = H(H1(A
z),H1(X

b), Â, B̂).

Note that the attack does not rely on Â reusing her static public key A in the two protocols
even when Â’s certificate for A does bind it to a particular protocol, thus preventing the adversary
from passing A as the public key of the other protocol. It suffices that B̂ shares his static key
between the two protocols to attack a KEA+h session at Â. In fact, it is not difficult to imagine
a scenario where Â uses the KEA+h protocol in a stand-alone setting while B̂ uses both KEA+h
and τ and moreover reuses his static key in the two protocols. Â may not even be aware of this
reuse on the part of B̂ in case B̂ uses two separate certificates for KEA+h and τ . Under such
a circumstance, Â will end up getting her session key compromised by just trying to establish a
KEA+h session with B̂. Also note that adding the protocol identifier as an argument in the key
derivation function H for KEA+h is not sufficient to prevent this kind of attack. We will revisit the
issue of adding protocol identifiers in the key derivation function as a safeguard against protocol
interference attacks in more detail in the next section.

3. Security model

This section describes a “shared” model and associated security definition that aims to capture
the security assurances guaranteed by d distinct key agreement protocols Π1,Π2, . . . ,Πd, in the
case where each party uses the same static key pair in all the d protocols. The individual protocols
are assumed to be of the two-party Diffie-Hellman variety, where the communicating parties Â
and B̂ exchange static and ephemeral public keys (and possibly other data) and use the static and
ephemeral keying information to derive a session key κ ∈ {0, 1}λ. The model enhances the extended
Canetti-Krawczyk model [7, 13], and the description closely follows that of [19] in the pre-specified
peer model.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 9

Notation. We assume that messages are represented as binary strings. If m is a vector then #m
denotes the number of its components. Two vectors m1 and m2 are said to be matched, written
m1 ∼ m2, if the first t = min{#m1,#m2} components of the vectors are pairwise equal as binary
strings.

Session creation. A party Â can be activated via an incoming message to create a session. The
incoming message has one of the following forms: (i) (Πi, Â, B̂) or (ii) (Πi, Â, B̂, In), where Πi

identifies which protocol is activated. If Â was activated with (Πi, Â, B̂) then Â is the session
initiator ; otherwise Â is the session responder.

Session initiator. If Â is the session initiator then Â creates a separate session state where
session-specific short-lived data is stored, and prepares a reply Out that includes an ephemeral
public key X. The session is labeled active and identified via a (temporary and incomplete) session
identifier sid = (Πi, Â, B̂,I,Comm) where Comm is initialized to Out. The outgoing message is
(Πi, B̂, Â,Out).

Session responder. If Â is the session responder then Â creates a separate session state and
prepares a reply Out that includes an ephemeral public key X. The session is labeled active and
identified via a (temporary and incomplete) session identifier sid = (Πi, Â, B̂,R,Comm) where
Comm = (In,Out). The outgoing message is (Πi, B̂, Â,I, In,Out).

Session update. A party Â can be activated to update a session via an incoming message of the
form (Πi, Â, B̂, role,Comm, In), where role ∈ {I,R}. Upon receipt of this message, Â checks that
she owns an active session with identifier sid = (Πi, Â, B̂, role,Comm); except with negligible prob-
ability, Â can own at most one such session. If no such session exists then the message is rejected,
otherwise Â updates Comm by appending In. The session identifier sid is (Πi, Â, B̂, role,Comm)
where the updated Comm is used. If the protocol requires a response by Â, then Â prepares the
required response Out; the outgoing message is (Πi, B̂, Â, role,Comm,Out) where role is B̂’s role
as perceived by Â. The session identifier is further updated by appending Out to Comm. If the
protocol specifies that no further messages will be received, then the session completes and accepts
a session key.

Aborted sessions. A protocol may require parties to perform some checks on incoming messages.
For example, a party may be required to perform some form of public key validation or verify a
signature. If a party is activated to create a session with an incoming message that does not meet
the protocol specifications, then that message is rejected and no session is created. If a party is
activated to update an active session with an incoming message that does not meet the protocol
specifications, then the party deletes all information specific to that session (including the session
state and the session key if it has been computed) and aborts the session. Abortion occurs before
the session identifier is updated. At any point in time a session is in exactly one of the following
states: active, completed, aborted.

Matching sessions. Since ephemeral public keys are selected at random on a per-session basis,
session identifiers are unique except with negligible probability. A session sid with identifier (Πi, . . .)
is called a Πi-session. Party Â is said to be the owner of a session (Πi, Â, B̂, ∗, ∗). For a session
(Πi, Â, B̂, ∗, ∗) we call B̂ the session peer ; together Â and B̂ are referred to as the communicating
parties. Let sid = (Πi, Â, B̂, roleA,CommA) be a session owned by Â, where roleA ∈ {I,R}. A
session sid∗ = (Πj , Ĉ, D̂, roleC ,CommC), where roleC ∈ {I,R}, is said to be matching to sid if
Πi = Πj, Â = D̂, B̂ = Ĉ, roleA 6= roleC , and CommA ∼ CommC . It can be seen that the session
sid, except with negligible probability, can have more than one matching session if and only if
CommA has exactly one component, i.e., is comprised of a single outgoing message.

10 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

Adversary. The adversary M is modeled as a probabilistic Turing machine and controls all com-
munications. Parties submit outgoing messages to M, who makes decisions about their delivery.
The adversary presents parties with incoming messages via Send(message), thereby controlling the
activation of parties. The adversary does not have immediate access to a party’s private informa-
tion, however in order to capture possible leakage of private information M is allowed to make the
following queries:

• StaticKeyReveal(Â): M obtains Â’s static private key.
• EphemeralKeyReveal(sid): M obtains the ephemeral private key held by session sid. We

will henceforth assume that M issues this query only to sessions that hold an ephemeral
private key.

• SessionKeyReveal(sid): If sid has completed then M obtains the session key held by sid.
We will henceforth assume that M issues this query only to sessions that have completed.

• EstablishParty(Â, A): This query allows M to register an identifier Â and a static public
key A on behalf of a party. The adversary totally controls that party, thus permitting
the modeling of attacks by malicious insiders. Parties that were established by M using
EstablishParty are called corrupted or adversary controlled. If a party is not corrupted it
is said to be honest.

Adversary’s goal. To capture indistinguishability M is allowed to make a special query Test(sid)
to a ‘fresh’ session sid. In response, M is given with equal probability either the session key held by
sid or a random key. If M guesses correctly whether the key is random or not, then the adversary
is said to be successful and meet its goal. Note that M can continue interacting with the parties
after issuing the Test query, but must ensure that the test session remains fresh throughout M’s
experiment.

Definition 1 (Π-fresh). Let sid be the identifier of a completed Π-session, owned by an honest
party Â with peer B̂, who is also honest. Let sid∗ be the identifier of the matching session of sid,
if the matching session exists. Define sid to be Π-fresh if none of the following conditions hold:

(1) M issued SessionKeyReveal(sid) or SessionKeyReveal(sid∗) (if sid∗ exists).
(2) sid∗ exists and M issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(sid).
(b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

(3) sid∗ does not exist and M issued one of the following:
(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(sid).
(b) StaticKeyReveal(B̂).

Definition 2. Let Π1,Π2, . . . ,Πd be a collection of d distinct key agreement protocols. The protocol
collection is said to be secure in the shared model if the following conditions hold:

(1) For any i ∈ [1, d] if two honest parties complete matching Πi-sessions then, except with
negligible probability, they both compute the same session key.

(2) For any i ∈ [1, d] no polynomially bounded adversary M can distinguish the session key of
a fresh Πi-session from a randomly chosen session key, with probability greater than 1

2 plus
a negligible fraction.

We emphasize that our shared model assumes that all parties reuse their static keys in each of
the d protocols. If a collection Π1, Π2, . . . ,Πd of key agreement protocols is shown to be secure
with respect to Definition 2, then each of the protocols Πi is individually secure in the extended
Canetti-Krawczyk model. Moreover, the collection of protocols is also secure in the situation where

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 11

a subset of parties use their static keys in only one protocol (and do not participate in runs of the
other protocols); this was the setting of the attack in §2.4.

Appendix B presents the NAXOS-C and DHKEA protocols, which are then proven secure in our
shared model in Appendix C.

4. Concluding remarks

Our shared model assumes that each party has exactly one static key pair, which is reused in
all the d key agreement protocols. It would be interesting to consider the more general scenario
where each party may have multiple static key pairs, each of which may be reused for a subset of
the d protocols. A further refinement of the shared model worthy of study is for the situation in
which the protocols have different security attributes, as is the case with one-pass and three-pass
protocols.

References

[1] ANSI X9.42, Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using

Discrete Logarithm Cryptography, American National Standards Institute, 2003.
[2] ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport

Using Elliptic Curve Cryptography, American National Standards Institute, 2001
[3] R. Anderson and R. Needham, “Robustness principles for public key protocols”, Advances in Cryptology –

CRYPTO ’95, Lecture Notes in Computer Science, 963 (1995), 236–247.
[4] S. Blake-Wilson, D. Johnson and A. Menezes, “Key agreement protocols and their security analysis”, Proceedings

of the Sixth IMA International Conference on Cryptography and Coding, Lecture Notes in Computer Science,
1355 (1997), 30–45.

[5] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, Advances in Cryptology –

CRYPTO 2001, Lecture Notes in Computer Science, 2319 (2001), 213–229.
[6] C. Boyd, Y. Cliff, J. Nieto and K. Paterson, “Efficient one-round key exchange in the standard model”, Informa-

tion Security and Privacy – ACISP 2008, Lecture Notes in Computer Science, 5107 (2008), 69–83. Full version
available at http://eprint.iacr.org/2008/007.

[7] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for building secure channels”,
Advances in Cryptology – EUROCRYPT 2001, Lecture Notes in Computer Science, 2045 (2001), 453–474. Full
version available at http://eprint.iacr.org/2001/040.

[8] J. Coron, M. Joye, D. Naccache and P. Paillier, “Universal padding schemes for RSA”, Advances in Cryptology

– CRYPTO 2002, Lecture Notes in Computer Science, 2442 (2002), 226–241.
[9] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryption schemes”, Advances

in Cryptology – CRYPTO ’99, Lecture Notes in Computer Science, 1666 (1999), 537–554.
[10] D. Gligoroski, S. Andova and S. Knapskog, “On the importance of the key separation principle for different

modes of operation”, Information Security Practice and Experience – ISPEC 2008, Lecture Notes in Computer
Science, 4991 (2008), 404–418.

[11] F. Hess, “Efficient identity based signature schemes based on pairings”, Selected Areas in Cryptography – SAC

2002, Lecture Notes in Computer Science, 2595 (2003), 310–324.
[12] J. Kelsey, B. Schneier and D. Wagner, “Protocol interactions and the chosen protocol attack”, Security Protocols,

Lecture Notes in Computer Science, 1361 (1998), 91–104.
[13] B. LaMacchia, K. Lauter and A. Mityagin, “Stronger security of authenticated key exchange”, ProvSec 2007,

Lecture Notes in Computer Science, 4784 (2007), 1–16.
[14] K. Lauter and A. Mityagin, “Security analysis of KEA authenticated key exchange”, Public Key Cryptography

– PKC 2006, Lecture Notes in Computer Science, 3958 (2006), 378–394.
[15] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, “An efficient protocol for authenticated key agreement”,

Designs, Codes and Cryptography, 28 (2003), 119–134.
[16] T. Matsumoto, Y. Takashima and H. Imai, “On seeking smart public-key distribution systems”, The Transactions

of the IECE of Japan, E69 (1986), 99–106.
[17] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.
[18] A. Menezes and B. Ustaoglu, “Security arguments for the UM key agreement protocol in the NIST SP 800-56A

standard”, Proceedings of ASIACCS ’08, ACM Press, 261–270.

12 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

[19] A. Menezes and B. Ustaoglu, “Comparing the pre- and post-specified peer models for key agreement”, Informa-

tion Security and Privacy – ACISP 2008, Lecture Notes in Computer Science, 5107 (2008), 53–68.
[20] NIST, SKIPJACK and KEA Algorithm Specifications, 1998. Available at http://csrc.nist.gov/groups/ST/

toolkit/documents/skipjack/skipjack.pdf.
[21] D. Pointcheval and J. Stern, “Security arguments for digital signatures and blind signatures”, Journal of Cryp-

tology, 13 (2000), 361–396.
[22] SP 800-56A, Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using

Discrete Logarithm Cryptography (Revised), National Institute of Standards and Technology, March 2007.
[23] M. Vasco, F. Hess and R. Steinwandt, “Combined (identity-based) public key schemes”, Cryptology ePrint

Archive Report 2008/466. Available at http://eprint.iacr.org/2008/466.

Appendix A. The τ protocol

Let γ denote the security parameter. In the protocol description, H : {0, 1}∗ → {0, 1}γ and
H2 : {0, 1}∗ → {0, 1}γ are hash functions. The full description of the τ protocol is in the original
Canetti-Krawczyk model [7] in which a session has identifier (Â, B̂,Ψ, role), where Ψ is a string
that is unique to that session and its matching session.

Definition 3 (τ -protocol). The protocol proceeds as follows:

(1) Upon activation (Â, B̂,Ψ,I), Â (the initiator) does the following:
(a) Create a session with identifier (Â, B̂,Ψ,I), provided that no session with identifier

(Â, B̂,Ψ, ∗) exists.
(b) Select an ephemeral private key x ∈R [1, q−1] and compute the corresponding ephemeral

public key X = gx.
(c) Compute σs = Ba and commitment for X, TA = H2(σs,Ψ,X, Â, B̂,I).
(d) Destroy σs and send (B̂, Â,Ψ,R,X, TA) to B̂.

(2) Upon activation (B̂, Â,Ψ,R,X, TA), B̂ (the responder) does the following:
(a) Create a session with identifier (B̂, Â,Ψ,R), provided that no session with identifier

(B̂, Â,Ψ, ∗) exists.
(b) Verify that X ∈ G∗.
(c) Compute σs = Ab and verify that TA = H2(σs,Ψ,X, Â, B̂,I).
(d) Select an ephemeral private key y ∈R [1, q−1] and compute the corresponding ephemeral

public key Y = gy.
(e) Compute commitment for Y , TB = H2(σs,Ψ, Y, B̂, Â,R) and verification value X =

H1(X
b).

(f) Destroy σs and send (Â, B̂,Ψ,I, Y, TB ,X) to Â.
(3) Upon activation (Â, B̂,Ψ,I, Y, TB ,X), Â does the following:

(a) Verify that (Â, B̂,Ψ,I) exists and Y ∈ G∗.
(b) Compute σs = Ba and verify that TB = H2(σs,Ψ, Y, B̂, Â,R).
(c) Verify that X = H1(B

x).
(d) Compute verification value Y = H1(Y

a).
(e) Compute the session key κ = H(Y x,X, Y).
(f) Destroy σs and x.
(g) Send (B̂, Â,Ψ,R, Y) to B̂.
(h) Complete session (Â, B̂,Ψ,I) with output (Â, B̂,Ψ, κ).

(4) Upon activation (B̂, Â,Ψ,R, Y), B̂ does the following:
(a) Verify that (B̂, Â,Ψ,R) exists and that the session state contains X.
(b) Verify that Y = H1(A

y).
(c) Destroy y.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 13

(d) Compute the session key κ = H(Xy ,X, Y).
(e) Complete the session (B̂, Â,Ψ,R) with output (B̂, Â,Ψ, κ).

If any of the verifications fail, the party erases all session-specific information including the corre-
sponding ephemeral private key.

Appendix B. The NAXOS-C and DHKEA protocols

The purpose of presenting the NAXOS-C and DHKEA protocols is to demonstrate that the
security definition of §3 is useful (and not too restrictive) in the sense that there exist practical pro-
tocols that meet the definition under reasonable assumptions. The protocols were designed to allow
a straightforward (albeit tedious) reductionist security argument, and have not been optimized.

In the protocol descriptions and the security argument, γ is the security parameter and H :
{0, 1}∗ → {0, 1}γ × {0, 1}γ , H1 : {0, 1}∗ → [1, q − 1] and H2 : {0, 1}∗ → {0, 1}2γ are hash functions.

(κm, κ) = H(gay, gbx, gxy, Â, B̂, X, Y, Π1)

x̃, X = gH1(a,x̃) ỹ, Y = gH1(b,ỹ)

Â, X B̂, b, BÂ, a, A

Â, TA=H2(κm, I, Â, B̂, X, Y, Π1)

B̂, Y , TB=H2(κm,R, B̂, Â, Y, X,Π1)

Figure 7. The NAXOS-C protocol.

Definition 4 ([19]). The NAXOS-C protocol, identified by Π1, proceeds as follows (cf. Figure 7):

(1) Upon receiving (Π1, Â, B̂,I), party Â (the initiator) does the following:

(a) Select an ephemeral private key x̃ ∈R {0, 1}γ and compute X = gH1(a,x̃).
(b) Initialize the session identifier to (Π1, Â, B̂,I,X).
(c) Send (Π1, B̂, Â,R,X) to B̂.

(2) Upon receiving (Π1, B̂, Â,R,X), party B̂ (the responder) does the following:
(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key ỹ ∈R {0, 1}γ , and compute y = H1(b, ỹ) and Y = gy.
(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.
(d) Compute (κm, κ) = H(σ1, σ2, σe, Â, B̂,X, Y,Π1) and TB = H2(κm,R, B̂, Â, Y,X,Π1).
(e) Destroy ỹ, y, σ1, σ2 and σe.
(f) Initialize the session identifier to (Π1, B̂, Â,R,X, Y, TB).
(g) Send (Π1, Â, B̂,I,X, Y, TB) to Â.

(3) Upon receiving (Π1, Â, B̂,I,X, Y, TB), party Â does the following:
(a) Verify that an active (Π1, Â, B̂,I,X) session exists and Y ∈ G∗.
(b) Compute x = H1(a, x̃).
(c) Compute σ1 = Y a, σ2 = Bx and σe = Y x.
(d) Compute (κm, κ) = H(σ1, σ2, σe, Â, B̂,X, Y,Π1).
(e) Destroy x̃, x, σ1, σ2 and σe.
(f) Verify that TB = H2(κm,R, B̂, Â, Y,X,Π1).
(g) Compute TA = H2(κm,I, Â, B̂,X, Y,Π1).
(h) Destroy κm.
(i) Send (Π1, B̂, Â,R,X, Y, TB , TA) to B̂.

14 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

(j) Update the session identifier to (Π1, Â, B̂,I,X, Y, TB , TA) and complete the session by
accepting κ as the session key.

(4) Upon receiving (Π1, B̂, Â,R,X, Y, TB , TA), party B̂ does the following:
(a) Verify that an active (Π1, B̂, Â,R,X, Y, TB) session exists.
(b) Verify that TA = H2(κm,I, Â, B̂,X, Y,Π1).
(c) Destroy κm.
(d) Update the session identifier to (Π1, B̂, Â,R,X, Y, TB , TA) and complete the session by

accepting κ as the session key.

If any of the verifications fail, the party erases all session-specific information and marks the
session as aborted.

(κm, κ) = H(gxy, Â, B̂, X, Y, Π2)

x̃, X = gH1(a,x̃) ỹ, Y = gH1(b,ỹ)

Â, X B̂, b, BÂ, a, A

Â, TA=H2(κm, gay,I, Â, B̂, X, Y, Π2)

B̂, Y , TB=H2(κm, gbx,R, B̂, Â, Y, X, Π2)

Figure 8. The DHKEA protocol.

Definition 5 (DHKEA). The DHKEA protocol, identified by Π2, proceeds as follows (cf. Figure 8):

(1) Upon receiving (Π2, Â, B̂,I), Â (the initiator) does the following:

(a) Select an ephemeral private key x̃ ∈R {0, 1}γ and compute X = gH1(a,x̃).
(b) Initialize the session identifier to (Π2, Â, B̂,I,X).
(c) Send (Π2, B̂, Â,R,X) to B̂.

(2) Upon receiving (Π2, B̂, Â,R,X), B̂ (the responder) does the following:
(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key ỹ ∈R {0, 1}γ , and compute y = H1(b, ỹ) and Y = gy.
(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.
(d) Compute (κm, κ) = H(σe, Â, B̂,X, Y,Π2) and TB = H2(κm, σ2,R, B̂, Â, Y,X,Π2).
(e) Destroy ỹ, y, σ1, σ2 and σe.
(f) Initialize the session identifier to (Π2, B̂, Â,R,X, Y, TB).
(g) Send (Π2, Â, B̂,I,X, Y, TB) to Â.

(3) Upon receiving (Π2, Â, B̂,I,X, Y, TB), Â does the following:
(a) Verify that an active (Π2, Â, B̂,I,X) session exists and Y ∈ G∗.
(b) Compute x = H1(a, x̃).
(c) Compute σ1 = Y a, σ2 = Bx and σe = Y x.
(d) Compute (κm, κ) = H(σe, Â, B̂,X, Y,Π2).
(e) Destroy x̃, x, σ1, σ2 and σe.
(f) Verify that TB = H2(κm, σ2,R, B̂, Â, Y,X,Π2).
(g) Compute TA = H2(κm, σ1,I, Â, B̂,X, Y,Π2).
(h) Destroy κm.
(i) Send (Π2, B̂, Â,R,X, Y, TB , TA) to B̂.
(j) Update the session identifier to (Π2, Â, B̂,I,X, Y, TB , TA) and complete the session by

accepting the session key κ.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 15

(4) Upon receiving (Π2, B̂, Â,R,X, Y, TB , TA), B̂ does the following:
(a) Verify that an active (Π2, B̂, Â,R,X, Y, TB) session exists.
(b) Verify that TA = H2(κm, σ1,I, Â, B̂,X, Y,Π2).
(c) Destroy κm.
(d) Update the session identifier to (Π2, B̂, Â,R,X, Y, TB , TA) and complete the session by

accepting the session key κ.

If any of the verifications fail, the party erases all session-specific information and marks the
session as aborted.

Appendix C. Security argument

Theorem 1. If H, H1 and H2 are modeled as random oracles, and G is a group where the GDH
assumption holds, then the pair of protocols (NAXOS-C,DHKEA) is secure in the shared model.

We proceed with the security argument.
Let Π1 denote NAXOS-C and Π2 denote DHKEA. Verifying that Π1 and Π2 satisfy condition 1

of Definition 2 is straightforward. We now verify that condition 2 of Definition 2 is satisfied —
that no polynomially bounded adversary can distinguish the session key of a fresh Πi-session from
a randomly chosen session key.

Let γ denote the security parameter, and let M be a polynomially (in γ) bounded adversary.
The adversary M is said to be successful with non-negligible probability if M wins the distin-
guishing game with probability 1

2 + p(γ), where p(γ) is non-negligible. The event that M is
successful is denoted by M . Let the test session be sid = (Πi, Â, B̂,I,X, Y, TB , TA) or sid =
(Πi, B̂, Â,R,X, Y, TB , TA). Let H∗ be the event that M queries H with (σ1, σ2, σe, Â, B̂,X, Y,Π1)
if i = 1, or with (σe, Â, B̂,X, Y,Π2) if i = 2. Let H∗ be the complement of event H∗, and let sid∗

be any completed session owned by an honest party such that sid∗ 6= sid and sid∗ is non-matching
to sid. Since sid∗ and sid are distinct and non-matching, it can be seen that the inputs to the key
derivation function H are different for sid and sid∗. And, since H is a random oracle, it follows that
M cannot obtain any information about the test session key from the session keys of non-matching
sessions. Hence Pr(M ∧ H∗) ≤ 1

2 and

(1) Pr(M) = Pr(M ∧ H∗) + Pr(M ∧ H∗) ≤ Pr(M ∧ H∗) +
1

2
,

whence Pr(M ∧ H∗) ≥ p(γ). We will henceforth denote the event M ∧ H∗ by M∗.
Assume further that M succeeds in an environment with n parties, activates at most s sessions

within a party, and terminates after time at most TM(γ).
The following conventions will be used for the remainder of the security argument. The DDH

oracle on input (ga, gb, gc) returns the bit 1 if gab = gc and the bit 0 otherwise. Also, ξ : G ×G → G
is a random function known only to S, such that ξ(X,Y) = ξ(Y,X) for all X,Y ∈ G. The algorithm
S, which simulates M’s environment, will use ξ(X,Y) to ‘represent’ CDH(X,Y) in situations where
S may not know logg X and logg Y . Except with negligible probability, M will not detect that
ξ(X,Y) is being used instead of CDH(X,Y).

We use M to construct a CDH solver S that succeeds with non-negligible probability. We begin
by considering the following complementary events:

E1: There exists an honest party B̂ such that M, during its execution, queries H1 with (b, ∗)
before issuing a StaticKeyReveal(B̂) query. (Note that M does not necessarily make a
StaticKeyReveal(B̂) query.)

E2: During its execution, for every party B̂ for which M queries H1 with (b, ∗), M issued
StaticKeyReveal(B̂) before the first (b, ∗) query to H1.

16 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

Since Pr(M∗) is non-negligible, it must be the case that either event E1 ∧M∗ or E2 ∧M∗ occurs
with non-negligible probability. These possibilities are considered in §C.1 and §C.2.

C.1. Event E1 ∧ M∗. We use M to construct an algorithm S that succeeds in solving the CDH
instance (U, V) with non-negligible probability provided that event E1 ∧ M∗ occurs with non-
negligible probability.

The algorithm S begins by establishing n parties. One of these parties, denoted V̂ , is selected at
random and assigned the static public key V ; ν ∈R [1, q − 1] is used to represent the corresponding
static private key. The remaining parties are assigned random static key pairs.

With the above setup S activates the adversary M on this set of parties and awaits the actions
of M. We next describe the actions of S in response to party activations and oracle queries.

(1) Send(Πi, Â, B̂,I): S executes step 1 of Πi.
(2) Send(Πi, B̂, Â,R,X): S executes step 2 of Πi. However, if B̂ = V̂ then S sets σ2 = ξ(V,X).
(3) Send(Πi, Â, B̂,I,X, Y, TB): S executes step 3 of Πi. However, if Â = V̂ then S sets

σ1 = ξ(V, Y).
(4) Send(Πi, B̂, Â,R,X, Y, TB , TA): S executes step 4 of Πi.
(5) H(σ1, σ2, σe, Â, B̂,X, Y,Π1):

(a) If Â = V̂ and σ1 6= ξ(V, Y), then S obtains τ1 = DDH(V, Y, σ1).
(i) If τ1 = 1, then S returns H(ξ(V, Y), σ2, σe, Â, B̂,X, Y,Π1).
(ii) If τ1 = 0, then S simulates a random oracle in the usual way by returning a

random value from the range of H for new queries and replaying answers if the
queries were made before.

(b) If B̂ = V̂ and σ2 6= ξ(V,X), then S obtains τ2 = DDH(V,X, σ2).
(i) If τ2 = 1, then S returns H(σ1, ξ(V,X), σe, Â, B̂,X, Y,Π1).
(ii) If τ2 = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(6) H(σe, Â, B̂,X, Y,Π2): S simulates a random oracle in the usual way.
(7) H1(z, ∗): For every new query, S computes Z = gz. If Z = V , then S aborts and outputs

CDH(U, V) = U z; otherwise S simulates a random oracle in the usual way.
(8) H2(κm, role, Â, B̂,X, Y,Π1): S simulates a random oracle in the usual way.
(9) H2(κm, σ, role, Â, B̂,X, Y,Π2):

(a) If role = I, Â = V̂ and σ 6= ξ(V, Y), then S obtains τ1 = DDH(V, Y, σ).
(i) If τ1 = 1, then S returns H2(κm, ξ(V, Y),I, Â, B̂,X, Y,Π2).
(ii) If τ1 = 0, then S simulates a random oracle in the usual way.

(b) If role = R, B̂ = V̂ and σ 6= ξ(V,X), then S obtains τ2 = DDH(V,X, σ).
(i) If τ2 = 1, then S returns H2(κm, ξ(V,X),R, Â, B̂,X, Y,Π2).
(ii) If τ2 = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(10) EphemeralKeyReveal(sid): S responds to the query faithfully.
(11) SessionKeyReveal(sid): S responds to the query faithfully.
(12) StaticKeyReveal(Â): If Â = V̂ , then S aborts with failure. Otherwise S responds to the

query faithfully.
(13) EstablishParty(Ê, E): S responds to the query faithfully.
(14) Test(sid): S responds to the query faithfully.
(15) M outputs a guess γ: S aborts with failure.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 17

Analysis. Except with negligible probability S’s simulation of M’s environment is perfect. If S
assigns V to an honest party B̂ for whom M will query H1(v, ∗) without first issuing a StaticK-

eyReveal(B̂) query, then S is successful as described in step 7 and abortions as in steps 12 and 15 do
not occur. Hence, if event E1∧M∗ occurs with probability p1, then S is successful with probability
Pr(S) that is bounded by

(2) Pr(S) ≥
1

n
p1.

During the simulation, S performs group exponentiations, accesses the DDH oracle, and simulates
three random oracles. Let q = Θ(2γ). Then a group exponentiation takes time TG = O(γ). We
assume that a DDH oracle call takes polynomial time TDDH(γ). Similarly, simulating oracles H,
H1 and H2 take polynomially bounded time TH(γ), TH1

(γ) and TH2
(γ), respectively. Therefore the

running time TS of S is bounded by

(3) TS ≤ (3TG + 2TDDH + TH + TH1
+ TH2

)TM.

C.2. Event E2 ∧ M∗. Let Tm be the event “the test session has a matching session owned by an
honest party”. We further subdivide event E2 ∧ M∗ into the following complementary events: (i)
E2a = E2 ∧ M∗ ∧ Tm and (ii) E2b = E2 ∧ M∗ ∧ Tm. Let p2 = Pr(E2 ∧ M∗), p2a = Pr(E2a), and
p2b = Pr(E2b). Since E2a and E2b are complementary events we have p2 = p2a + p2b. Therefore,
if event E2 ∧ M∗ occurs with non-negligible probability, then either E2a or E2b occurs with non-
negligible probability. The two events are considered in §C.2.1 and §C.2.2.

C.2.1. Event E2a. We use M to construct an algorithm S that succeeds in solving the CDH in-
stance (U, V) with non-negligible probability, provided that event E2a occurs with non-negligible
probability.

The algorithm S begins by establishing n parties that are assigned random static key pairs. In
addition, S randomly selects two parties Ĉ, D̂ and two integers i, j ∈R [1, s] subject to the condition
that (Ĉ, i) 6= (D̂, j).

With the exception of Ĉ’s ith and D̂’s jth ephemeral key pairs, S selects ephemeral key pairs
on behalf of honest parties. The ith ephemeral public key selected on behalf of Ĉ is chosen to
be U and the corresponding ephemeral private key is ũ ∈R {0, 1}γ ; note that S does not know
u = logg U = H1(c, ũ). Similarly, the jth ephemeral public key of D̂ is V and the corresponding
ephemeral private key is ṽ ∈R {0, 1}γ ; S does not know v = logg V = H1(d, ṽ). The sessions that

are subsequently activated with outgoing ephemeral public keys U and V are denoted by sidU and
sidV , respectively. Next we discuss the actions of S in response to party activations and oracle
queries.

(1) Send(Πi, Â, B̂,I): S executes step 1 of Πi.

(2) Send(Πi, B̂, Â,R,X): S executes step 2 of Πi. If the session created is sidU or sidV , then
S deviates from the protocol description by setting σ1 = ξ(A,Y) and σe = ξ(X,Y) where
Y ∈ {U, V } is the ephemeral public key of the created session.

(3) Send(Πi, Â, B̂,I,X, Y, TB): S executes step 3 of Πi. However, if X ∈ {U, V }, then S
deviates by not computing x = H1(a, x̃) in step 3(b) and by setting σ2 = ξ(B,X) and
σe = ξ(X,Y).

(4) Send(Πi, B̂, Â,R,X, Y, TB , TA): S executes step 4 of the protocol.
(5) H(σ1, σ2, σe, Â, B̂,X, Y,Π1):

(a) If {X,Y } = {U, V } and DDH(X,Y, σe) = 1, then S aborts M and outputs σe =
CDH(U, V).

18 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

(b) If X ∈ {U, V } and either σ2 6= ξ(B,X) or σe 6= ξ(X,Y), then S sets τ2 = 1 if either
DDH(B,X, σ2) = 1 or σ2 = ξ(B,X); otherwise S sets τ2 = 0. Similarly, S sets τe = 1
if either DDH(X,Y, σe) = 1 or σe = ξ(X,Y); otherwise S sets τe = 0.

(i) If τ2 = 1 and τe = 1, then S returns H(σ1, ξ(B,X), ξ(X,Y), Â, B̂,X, Y,Π1).
(ii) If τ2 6= 1 or τe 6= 1, then S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and either σ1 6= ξ(A,Y) or σe 6= ξ(X,Y), then S sets τ1 = 1 if either
DDH(A,Y, σ1) = 1 or σ1 = ξ(A,Y); otherwise S sets τ1 = 0. Similarly, S sets τe = 1
if either DDH(X,Y, σe) = 1 or σe = ξ(X,Y); otherwise S sets τe = 0.

(i) If τ1 = 1 and τe = 1, then S returns H(ξ(A,Y), σ2, ξ(X,Y), Â, B̂,X, Y,Π1).
(ii) If τ1 6= 1 or τe 6= 1, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.
(6) H(σe, Â, B̂,X, Y,Π2):

(a) If {X,Y } = {U, V } and DDH(X,Y, σe) = 1, then S aborts M and outputs σe =
CDH(U, V).

(b) If X ∈ {U, V } and σe 6= ξ(X,Y), then S obtains τe = DDH(X,Y, σe).
(i) If τe = 1, then S returns H(ξ(X,Y), Â, B̂,X, Y,Π2).
(ii) If τe = 0, then S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and σe 6= ξ(X,Y), then S obtains τe = DDH(X,Y, σe).
(i) If τe = 1, then S returns H(ξ(X,Y), Â, B̂,X, Y,Π2).
(ii) If τe = 0, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.
(7) H1(a, x̃): S simulates a random oracle in the usual way except if x̃ = ũ and Â (the party

whose static public key is ga) is the owner of sidU , or if x̃ = ṽ and Â is the owner of sidV ,
in which case S aborts with failure.

(8) H1(κm, role, Â, B̂,X, Y,Π1): S simulates a random oracle in the usual way.
(9) H2(κm, σ, role, Â, B̂,X, Y,Π2):

(a) If X ∈ {U, V }, role = R and σ 6= ξ(B,X), then S obtains τ2 = DDH(B,X, σ).
(i) If τ2 = 1, then S returns H2(κm, ξ(B,X),R, Â, B̂,X, Y,Π2).
(ii) If τ2 = 0, then S simulates a random oracle in the usual way.

(b) If Y ∈ {U, V }, role = I and σ 6= ξ(A,Y), then S obtains τ1 = DDH(A,Y, σ).
(i) If τ1 = 1, then S returns H2(κm, ξ(A,Y),I, Â, B̂,X, Y,Π2).
(ii) If τ1 = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(10) EphemeralKeyReveal(sid): S responds to the query faithfully.
(11) SessionKeyReveal(sid): S responds to the query faithfully.
(12) StaticKeyReveal(Â): S responds to the query faithfully.
(13) EstablishParty(Ê, E): S responds to the query faithfully.
(14) Test(sid): If the ephemeral public keys used in sid are not {U, V }, then S aborts with

failure. Otherwise S responds to the query faithfully.
(15) M outputs a guess γ: S aborts with failure.

Analysis. Except with negligible probability, S’s simulation of M’s environment is perfect. The
probability that M selects sidU or sidV as the test session and the other as its matching session is
at least 2/(ns)2. Suppose that this is indeed the case (so S does not abort in step 14) and suppose
that event E2a occurs. Let Â and B̂ denote the communicating parties for the test session and,
without loss of generality, let Â be the test session owner and U her ephemeral public key. Since
ũ is used only in the test session, M must obtain it via an EphemeralKeyReveal query before

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 19

making an H1 query that includes ũ. Similarly, M must obtain ṽ from the matching session via
an EphemeralKeyReveal query before making an H1 query that includes ṽ. Under event E2, the
adversary first issues a StaticKeyReveal query to a party before making an H1 query that includes
that party’s static private key. Since the test session is fresh, M can query for at most one value
in each of the pairs (a, ũ) and (b, ṽ); hence S does not abort as described in step 7. Under event
M∗, except with negligible probability of guessing ξ(U, V), S is successful as described in step 5(a)
if the test session is a Π1-session and S is successful as described in step 6(a) if the test session is a
Π2-session. In either case S does not fail as described in steps 14 and 15. The success probability
of S is bounded by

(4) Pr(S) ≥
2

(ns)2
p2a.

The running time of S is bounded by

(5) TS ≤ (3TG + 3TDDH + TH + TH1
+ TH2

)TM.

C.2.2. Event E2b ∧M∗. We use M to construct an algorithm S that succeeds in solving the CDH
instance (U, V) with non-negligible probability, provided that event E2b ∧ M∗ occurs with non-
negligible probability.

The algorithm S begins by establishing n parties. One of these parties, denoted V̂ , is selected
at random and assigned the static public key V , and ν ∈R [1, q − 1] is used to represent the
corresponding static private key. The remaining parties are assigned random static key pairs.
Furthermore, S randomly selects a party Ĉ and integer i ∈R [1, s]. With the exception of the ith
ephemeral key of Ĉ, S selects ephemeral key pairs on behalf of honest parties. The ith ephemeral
public key selected on behalf of Ĉ is chosen to be U and the corresponding ephemeral private key
is ũ ∈R {0, 1}γ ; note that S does not know u = logg U = H1(c, ũ). The session that is subsequently

activated with ephemeral public key U is denoted by sidU . Next we discuss the actions of S in
response to party activations and oracle queries.

(1) Send(Πi, Â, B̂,I): S executes step 1 of Πi.
(2) Send(Πi, B̂, Â,R,X): S executes step 2 of Πi. However, if B̂ = V̂ then S deviates from

the protocol description by setting σ2 = ξ(V,X). Also, if the session created is sidU , then
S sets σ1 = ξ(A,Y) and σe = ξ(X,Y) where Y = U is the ephemeral public key of the
created session.

(3) Send(Πi, Â, B̂,I,X, Y, TB): S executes step 3 of Πi. However, if Â = V̂ , then S deviates
by setting σ1 = ξ(V, Y). Also, if X = U , then S deviates by not computing x = H1(a, x̃)
in step 3(b) and sets σ2 = ξ(B,X) and σe = ξ(X,Y).

(4) Send(Πi, B̂, Â,R,X, Y, TB , TA): S executes step 4 of Πi.
(5) H(σ1, σ2, σe, Â, B̂,X, Y,Π1):

(a) If Â = V̂ and σ1 6= ξ(V, Y), then S obtains τ1 = DDH(V, Y, σ1).
(i) If τ1 = 1 and Y = U , then S aborts M and outputs CDH(U, V) = σ1.
(ii) If τ1 = 1 and Y 6= U , then S returns H(ξ(V, Y), σ2, σe, Â, B̂,X, Y,Π1).
(iii) If τ1 = 0, then S simulates a random oracle in the usual way.

(b) If B̂ = V̂ and σ2 6= ξ(V,X), then S obtains τ2 = DDH(V,X, σ2).
(i) If τ2 = 1 and X = U , then S aborts M and outputs CDH(U, V) = σ2.
(ii) If τ2 = 1 and X 6= U , then S returns H(σ1, ξ(V,X), σe, Â, B̂,X, Y,Π1).
(iii) If τ2 = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(6) H(σe, Â, B̂,X, Y,Π2):

20 SANJIT CHATTERJEE, ALFRED MENEZES, AND BERKANT USTAOGLU

(a) If X ∈ {U, V } and σe 6= ξ(X,Y), then S obtains τe = DDH(X,Y, σe).
(i) If τe = 1, then S returns H(ξ(X,Y), Â, B̂,X, Y,Π2).
(ii) If τe = 0, then S simulates a random oracle in the usual way.

(b) If Y ∈ {U, V } and σe 6= ξ(X,Y), then S obtains τe = DDH(X,Y, σe).
(i) If τe = 1, then S returns H(ξ(X,Y), Â, B̂,X, Y,Π2).
(ii) If τe = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(7) H1(a, x̃): S simulates a random oracle in the usual way except if x̃ = ũ and Â (the party

whose static public key is ga) is the owner of sidU , in which case S aborts with failure.
(8) H2(κm, role, Â, B̂,X, Y,Π1): S simulates random oracle in the usual way.
(9) H2(κm, σ, role, Â, B̂,X, Y,Π2):

(a) If role = I, Â = V̂ and σ 6= ξ(V, Y), then S obtains τ1 = DDH(V, Y, σ).
(i) If τ1 = 1 and Y = U , then S aborts M and outputs CDH(U, V) = σ1.
(ii) If τ1 = 1 and Y 6= U , then S returns H2(κm, ξ(V, Y),I, Â, B̂,X, Y,Π2).
(iii) If τ1 = 0, then S simulates a random oracle in the usual way.

(b) If role = R, B̂ = V̂ and σ 6= ξ(V,X), then S obtains τ2 = DDH(V,X, σ).
(i) If τ2 = 1 and X = U , then S aborts M and outputs CDH(U, V) = σ2.
(ii) If τ2 = 1 and X 6= U , then S returns H2(κm, ξ(V,X),R, Â, B̂,X, Y,Π2).
(iii) If τ2 = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.
(10) EphemeralKeyReveal(sid): S responds to the query faithfully.
(11) SessionKeyReveal(sid): S responds to the query faithfully.
(12) StaticKeyReveal(Â): S responds to the query faithfully unless Â = V̂ in which case S

aborts with failure.
(13) EstablishParty(Ê, E): S responds to the query faithfully.
(14) Test(sid): If the peer of sid is not V̂ or the outgoing ephemeral public key is not U then S

aborts with failure. Otherwise S responds to the query faithfully.
(15) M outputs a guess γ: S aborts with failure.

Analysis. The probability that the test session has peer V̂ and outgoing ephemeral public key U
is at least 1/(n2s). Suppose that this is indeed the case (so S does not abort in step 14), and

suppose that event E2b occurs. Let Â be the owner of the test session sidU . The experiment may
fail if M queries H1 with (a, ũ). Since ũ is used only in the test session, M must obtain it via
an EphemeralKeyReveal query before making an H1 query that includes ũ. Under event E2, the
adversary first issues a StaticKeyReveal query to a party before making an H1 query that includes
that party’s static private key. Since the test session is fresh, M can query for at most one value in
the pair (a, ũ); hence S does not abort as described in step 7. Since the test session is fresh, M is
not allowed to issue a StaticKeyReveal query to V̂ ; hence S does not abort as described in step 12.

Now, Â receives an incoming tag TV before the test session completes. In event Tm the test
session has no matching session. Since key confirmation tags are not repeated except with negligible
probability, M must have computed tag TV . Since TV is an output of a random oracle H2, then:

(1) If the test session is a Π1-session, then M must have obtained the κm input to H2 by
querying H with CDH(U, V). In this case S is successful as described in step 5.

(2) If the test session is a Π2-session, then M must have queried H2 with CDH(U, V). In this
case S is successful as described in step 9.

REUSING STATIC KEYS IN KEY AGREEMENT PROTOCOLS 21

In either case S does not abort as in step 15. The success probability of S is bounded by

(6) Pr(S) ≥
1

(n2s)
p2b,

and the running time of S is bounded by

(7) TS ≤ (3TG + 2TDDH + TH + TH1
+ TH2

)TM.

C.3. Overall analysis. Combining the results from §C.1, §C.2.1 and §C.2.2, we conclude that for
every adversary M there is an algorithm S that solves the CDH instance with running time TS
and success probability Pr(S), where

(8) Pr(S) ≥ max

{

1

n
p1,

2

(ns)2
p2a,

1

n2s
p2b

}

and

(9) TS ≤ (3TG + 3TDDH + TH + TH1
+ TH2

)TM.

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L

3G1 Canada

E-mail address: s2chatte@uwaterloo.ca

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L

3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

Okamoto Research Laboratory, NTT Information Sharing Platform Laboratories, 3-9-11, Midori-

cho Musashino-shi, Tokyo 180-8585

E-mail address: ustaoglu.berkant@lab.ntt.co.jp

